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Abstract

The paper presents a numerical determination of the aeroelastic characteristics of a two-dimensional airfoil. A

numerical method is described for the resolution of the incompressible Navier–Stokes equations, based on a

streamfunction/vorticity formulation in relative frame. The solution method employs influence matrix techniques to

determine the exact boundary conditions and a conformal mapping of the physical space. Validation of the method is

presented based on several test cases, and the code is then applied to the flutter derivatives of an airfoil. Two

methodologies are tested for the calculation of the aerodynamics coefficients associated to the motion-related force

functions proposed by Scanlan and Tomko. These are based on forced-motion and spring-mounted airfoil experiments.

Results are compared with theoretical values based on the Theodorsen function. Good agreement with the inviscid

theory is generally observed, except for the coefficients related to the angular velocity. The effects of the Reynolds

number and the thickness of the airfoil are also investigated. The results indicate that, while the spring-mounted

approach provides correct estimates of the flutter coefficients, the forced-motion approach is better suited for their

computation.

r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

At the present time strong effort is being expended in the area of computational fluid dynamics. One problem of

considerable practical interest is the estimation of time-varying fluid forces acting on oscillating bodies (Scanlan, 2000).

A particular category of the test cases concerns two-dimensional (2-D) or along-wind ‘‘sectional’’ representations, as in

the case of the well-known airfoil profile in a vibrating aircraft wing of infinite aspect ratio (Bisplighoff and Ashley,

1962). A parallel case is that of an along-wind section of a bridge of very long span (Scanlan and Tomko, 1971; Larsen

and Walther, 1998; Beith, 1998). As one step toward eventual study of the bridge problem, and as a stand-alone exercise

in methodology, the corresponding ‘‘classical’’ thin-airfoil problem is treated in this paper.

Because of the geometrical complications of actual bridge deck forms, it has been customary to test for their

associated oscillatory aerodynamic coefficients in the wind tunnel rather than attempt to calculate them from first

principles. Recent advances in computational fluid dynamics have, however, partially opened the door for the direct

calculation of those associated aerodynamic oscillatory motion coefficients termed flutter derivatives (e.g., Deniz and
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Staubli, 1998; Larsen and Walther, 1998). This state of the art is exploited to a degree in the present paper, restricting

the study, however, as a primary instance, to the flutter derivatives of a thin airfoil.

Specifically, the objective of the study described in this work is to obtain the motional aerodynamic coefficients, or

flutter derivatives, of a thin airfoil undergoing oscillations within a smooth incompressible flow of medium-range

Reynolds number. Consistent with the classical aeroelastic theory of flutter (Scanlan and Tomko, 1971), the flow in the

present work is considered as 2-D. Numerical simulation of the flow is performed using a specially-design

computational code that is based on a vorticity/streamfunction form of the Navier–Stokes equations. As described in

Section 2, the method combines (i) a conformal mapping of the computational domain onto a rectangle (Theodorsen,

1931), which enables the use of an efficient solver for the resulting Poisson equation for the streamfunction; (ii) a

systematic use of influence matrix techniques (see Vanel et al., 1986; Daube, 1992, Shen and Ta Phuoc, 1995) to

determine the exact values of the streamfunction and the vorticity distribution along the airfoil surface, in a noniterative

fashion; (iii) a multigrid algorithm (see McCormick, 1987) to solve the vorticity equation with good scalability

properties with regard to the number of computational points; (iv) a procedure for the calculation of the fluid forces

applied on the airfoil through a line integration along the airfoil surface; and (v) a coupling between airfoil and flow

dynamics using a Newmark scheme (Zienkiewicz, 1977).

In Section 3, the formulation is generalized for a moving coordinate system attached to the body surface to handle

moving airfoil problems, without requiring remeshing procedure. Then, in Section 4, the computation of the

aerodynamic loads applied on the airfoil is detailed, together with the methodology accounting for coupling between

the flow and the airfoil. The latter is considered in this context as a linear oscillator. In Section 5, we provide some

results of test computations illustrating the efficiency and reliability of the method. These are demonstrated through

comparison with measurements and other computations in the literature. In Section 6 the theory of flutter derivatives is

presented, together with a discussion of two methodologies used for their extraction. The latter are based on

simulations of forced-motion and spring-mounted airfoil experiments. These methods are applied in Sections 7 and 8,

respectively, and the corresponding results are compared to each other as well as inviscid theoretical predictions. Major

conclusions are summarized in Section 9.

2. Vorticity–Streamfunction Formulation

We are concerned with the solution of 2-D incompressible mass and momentum conservation equations, written in

non-dimensional vorticity–streamfunction form as (Milne-Thomson, 1968; Vanel et al., 1986)

@o
@t

þr � ðouÞ ¼
1

Re
r2o; ð1Þ

r2c ¼ �o: ð2Þ

Here, o is the vorticity, c is the streamfunction, u ¼ ðu; vÞ ¼ ð@c=@y;�@c=@xÞ is the velocity vector, Re � UL=n is the
Reynolds number, U is the characteristic velocity, L characteristic length, and n is the diffusivity. To ensure the
equivalence of the ðc;oÞ formulation with the primitive Navier–Stokes equations, and because the domain is here
simply connected, the following constraint arises:Z

@Oo

@o
@n
dl ¼ 0; ð3Þ

where @=@n denotes the normal derivative and @Oo the (stationary) airfoil surface. Eq. (3) shows that the net flux of

vorticity entering the computational domain vanishes. This constraint is equivalent to enforcing the continuity of the

pressure, p; around the obstacle.

2.1. Conformal mapping

In the following, we shall in particular consider the flow around an NACA0012 airfoil in an infinite domain.

However, Eqs. (1) and (2) will be solved using finite difference techniques on a bounded domain. In order to use efficient

fast solvers for the discrete set of equations, a coordinate transform is used that permits the treatment of the problem in

a regular rectangular domain. In this work, we employ a conformal mapping that transforms a rectangular domain

ðX ;Y Þ into physical space ðx; yÞ around the airfoil. The transformation is defined as follows:

ðX ;Y ÞA 0;
logRG

p

� �
	 ½0; 2�-x þ iy ¼ exp pðX þ iY Þ þ B þ

C

B þ exp pðX þ iY Þ
; ð4Þ
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where B and C are the transformation parameters. For an NACA0012 airfoil, B ¼ 0:647384 and C ¼ 0:8061: RG gives

the spatial extension of the computational domain around the airfoil. For B ¼ C ¼ 0; the transformation maps a
circular domain, and for B ¼ 0 and C > 0 one obtains a family of ellipses. Examples of transformations are given in
Fig. 1.

In the transformed domain ðX ;Y Þ; the governing equations are

@o
@t

þ
1

F
*r � ðo*uÞ ¼

1

F Re
*r2o; ð5Þ

*r2c ¼ �Fo; ð6Þ

where

F �
dðx þ iyÞ
dðX þ iY Þ

����
���� ð7Þ

is the modulus of the transformation and *u � ð@c=@Y ;�@c=@X Þ:
In the mathematical domain, constraint (3) is expressed asZ 2

0

@o
@X

����
X¼0

dY ¼ 0: ð8Þ

The boundary conditions and solution methods are now detailed.
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Fig. 1. Examples of different transformations of the mathematical plane onto the physical plane. Top left: B ¼ C ¼ 0 mapping of a
cylinder. Top right: B ¼ �0:0647384; C ¼ 0:8061 mapping of an NACA0012 airfoil. Bottom left: B ¼ 0; C ¼ 0:5 mapping of an
ellipse. Bottom right: B ¼ 0; C ¼ 0:99 mapping of a nearly flat plate.
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2.2. External boundary conditions

To solve the governing equations one has to provide boundary conditions for c and o; on the obstacle as well as on
far boundaries, denoted by @Oo and @OG: In the transformed domain, these correspond to X ¼ 0 and X ¼ 1

p logRG;
respectively. For the computations presented below, the computational domain extends far from the obstacle (typically,

RG ¼ 80), so that we can approximate the value of c on @OG to be equal to the undisturbed streamfunction of the

incoming flow:

cG ¼ cððx; yÞA@OGÞ ¼ c
N
ðx; yÞ ¼ UNy � VNx; ð9Þ

with UN and VN the free-stream velocity components. In so doing, we impose the flow rate in the computational

domain.

For the o boundary values, two different conditions have been tested: (i) homogeneous Dirichlet boundary

condition: oG ¼ oððx; yÞAOGÞ ¼ 0; which assumes that the external boundary is so far from the obstacle that one can
consider that vortices have completely diffused if/when they reach the external boundary; (ii) inflow/outflow boundary

condition: the value of oG on @OG is estimated through an explicit integration of the convective part of Eq. (1) on the

portions of @OG where the convective flux leaves the computational domain, elsewhere, the homogeneous Dirichlet

boundary condition is applied. Numerical tests have shown very little dependence of the computed solutions upon the

kind of boundary external conditions selected on @OG: We now focus on boundary conditions on the obstacle.

2.3. Wall boundary conditions

The system of equations to be solved, together with boundary conditions, is

@o
@t

þ
1

F
*r � ðo*uÞ ¼

1

F Re
*r2o; ð10aÞ

*r2c ¼ �oF ; ð10bÞ

*u ¼
@c
@Y

;�
@c
@X

� �
; ð10cÞ

c ¼ cG; o ¼ oG on OG; *u ¼ 0 on Oo; ð10dÞ

Z 2

0

@o
@X

����
X¼0

dY ¼ 0; ð10eÞ

where the determination of cG and oG has been discussed in the previous subsection. Introducing a second order

discretization of the time derivative appearing in Eqs. (10), and an explicit estimation of the nonlinear terms, one

obtains the following semi-discrete form of Eqn. (10)):

ðs� *r2Þonþ1 ¼ f nþ1 �
F Re

2Dt
ð4on � on�1Þ �Re *r � ð2o*uÞn � ðo*uÞn�1

� �
; ð11Þ

where s ¼ 3F Re=2Dt; Dt is the time step, while the superscript refers to the time level. One of the difficulties in the

solution of the above equation is that the natural boundary conditions on a fixed wall are no-slip velocity, i.e., *u ¼ 0;
which does not directly provide values of the wall vorticity, oo ¼ oððx; yÞAOoÞ: In addition, by treating the obstacle as a
streamline, one concludes that co ¼ cððx; yÞAOoÞ is constant; however, the value of this constant is not explicitly
known, but is obtained from the pressure continuity constraint, Eq. (3). Thus, the solution of the Helmholtz equation in

(11) is coupled to that of the streamfunction Poisson equation (10)). In order to address these difficulties, and in the

process decouple these two elliptic problems, we have adopted the influence matrix technique proposed by Daube

(1992) (see also Worlibar et al., 1998). Specific details on this approach are omitted.

2.4. Discretization and solvers

Numerical simulation of the governing equations is based on a finite-difference methodology (see Fletcher, 1988). In

the transform plane, the computational domain consists of the rectangle ½0; logðRGÞ=p� 	 ½0; 2�: Variables are
represented at the nodes of a computational grid which is used to discretize the domain. A uniform Cartesian grid with

ðNX ;NY Þ points in the ðX ;Y Þ direction is used for this purpose. Second-order centered differences are used to discretize
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all spatial derivatives, except for the convective vorticity terms which are treated using Leonard’s third-order upwind

scheme (see Tamura et al., 1990).

Discretization of the streamfunction–vorticity Poisson equation leads to a linear system of equations which must be

inverted at every time step. In order to solve the system efficiently, we exploit the periodicity in the Y direction and

construct a discrete Fourier representation of the vorticity and streamfunction values (Buzbee et al., 1970). This

transforms the original discretized system into a decoupled collection of NY 1-D problems involving the streamfunction

and vorticity Fourier coefficients. These 1-D systems are governed by system matrices with a tri-diagonal structure, and

are efficiently inverted with OðNX Þ scheme. Thus, inversion of the complete system is performed in essentially

OðNXNY Þ computations.
The implicit treatment of the viscous terms in the vorticity transport equation also leads to a linear system of

equations. In this discrete Helmholtz system, however, the presence of a Y -varying Jacobian function F complicates the

implementation of a Fourier-based representation, as diagonalization is no longer possible. Consequently, an

alternative iterative multigrid technique is considered (Mc Cormick, 1987). The multigrid technique uses kmax
refinement levels, where the finest grid coincides with the computational grid defined above. Coarser levels are defined

by successively halving the number of grid points. At every grid level k; 3k Gauss–Seidel iterations are performed in

order to reduce the residual, and V-cycles are repeated until the residual on the finest grid falls below a predefined

tolerance e: In the computations below, we use e ¼ 10�7; and we find that 1–6 V-cycles are needed to reduce the residual
below this level.

3. Moving airfoil

We now consider the case of a moving airfoil placed in a steady, uniform stream with far-field velocity uN ¼
ðUN;VNÞ: The displacement of the airfoil is described through its instantaneous rotation rate OaðtÞ around a given
center of rotation XRðtÞ and by its translation velocity vector UaðtÞ ¼ ðua; vaÞ:
Let XBðtÞ denote the center of mass of the airfoil. The instantaneous velocity of the center of mass obeys

dXB

dt
¼ Ua þ Oak4ðXB � XRÞ: ð12Þ

We will denote by Xa the coordinate vector in the laboratory or absolute reference frame, and by X r the coordinate

vector in the reference frame attached to the body (see Fig. 2). Thus, a fixed point x ¼ ðx; yÞ in the relative frame has
absolute velocity Ua þ Oak4ðx � XRÞ:
A convenient streamfunction–vorticity formulation of the problem in the relative frame is given by

@oa

@t
þr � ½oaur� ¼

1

Re
r2oa; ð13aÞ

r2cr ¼ �oa þ 2Oa; ð13bÞ

ur ¼ r4ðcrkÞ; ð13cÞ

X B
α

X

Y

O

y

x

Fig. 2. Description of the notations used for the formulation in relative frame. The reference frame is ðO;X ;Y Þ: The obstacle is located
by the position of its center XB and the rotation angle a; which also corresponds to the angle of attack. The instantaneous rate of
rotation is da=dt ¼ OaðtÞ:
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where oa is the absolute vorticity, ca and cr are the absolute and relative streamfunctions, respectively, and ur is the

relative velocity. The relative streamfunction is related to the absolute streamfunction through

r4ðcrkÞ ¼ r4ðcakÞ � Oak4ðx � XRÞ � Ua; ð14Þ

while the relative and absolute velocities are related by

u ¼ UaðtÞ þ ur þ Oak4ðx � XRÞ: ð15Þ

The governing system (13) is subject to the following conditions or constraints:

ur ¼ 0 on @Oo;

cr ¼ ½UN4x � Ua4x � ðOak4ðx � XRÞÞ4ðx � XRÞ� � k on @OG;

1

Re

Z 2

0

@oa

@X

����
X¼0

dY ¼ �
Z 2

0

dðOa4ðx � XRÞÞ
dt

����
X¼0

4n
ffiffiffiffi
F

p
dY ; ð16Þ

and suitable vorticity conditions on @OG:
The methodology of Section 2 still applies, with minor differences which are now listed. First, the problem accounts

for the rotation of the relative frame by adding the 2Oa term on the right-hand side of the Poisson equation. Second, the

external boundary condition on the streamfunction, given in Eq. (16), accounts for the translations and rotation of the

reference frame. Finally, the dynamic integral constraint in Eq. (16) now represents the balance between the net flux of

vorticity entering in the fluid domain as well the time derivative of the circulation on @Oo:

4. Fluid forces and airfoil dynamics

In order to determine the motion of the airfoil, the fluid forces applied on the body must be estimated. When these are

known, the displacement of the airfoil is obtained by integrating the equations of motion describing its dynamics. In

this section we describe the determination of the fluid forces, the equations of motion of the airfoil, and the coupling

between the flow and airfoil dynamics.

In doing so we shall rely on the notations illustrated in Fig. 3. Specifically, we introduce the local basis ðn; sÞ in the
physical domain, where n and s respectively denote the unit vectors tangential to the transformed constant X and

constant Y lines in the mathematical domain. By virtue of the conformal mapping, this basis is orthogonal. Moreover,

@=@n and @=@t refer to differentiation in the directions n and s in the physical domain. Thus, un and ut denote the

components of the velocity expressed in the basis ðn; sÞ; i.e., u ¼ unn þ uts:

4.1. Pressure distribution

To determine the pressure distribution on the airfoil, we start from the momentum equation in the absolute reference

frame:

C þrp ¼
1

Re
r2U ; ð17Þ

n

τ

δΩo

δΩo

X

Y0 X = 0

Y = cte X = cte

Transformed domainMathematical domain

Fig. 3. Notation used in Section 4. The local basis (n; sÞ of the physical space is orthonormal. The vector n is tangential to the constant

Y lines, while s is tangential to the constant X lines.
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where C � D*u=Dt is the material acceleration. By taking the scalar product of Eq. (17) with s; and expressing the
viscous force in terms of relative velocity, we get

@p

@t
¼ �CðxÞ � s þ

1

Re

@or

@n
; ð18Þ

where or � oa � Oa is the relative vorticity. The pressure distribution on the solid boundary is obtained by integration

of Eq. (18), i.e.

pðtÞ ¼ pð0Þ þ
Z t

0

�C � s þ
1

Re

@or

@n

� �
dt0; ð19Þ

where pð0Þ is an arbitrary constant.

4.2. Distribution of Viscous Stresses

Following the present notation conventions, the viscous stress tensor on the boundary @Oo is expressed as

%r ¼
1

Re

@un

@n
0

@ut

@n

@ut

@t

0
BB@

1
CCA; ð20Þ

where we have used the continuity equation

r � ur ¼
@vt

@t
þ
@vn

@n
¼ 0 ð21Þ

to conclude that the normal derivative of n vanishes on the boundary, i.e., @vn=@n ¼ 0 on @Oo: The tangential viscous
stress at the boundary, S; is thus given by

S ¼ %r � n ¼
or

Re
s: ð22Þ

4.3. Airfoil dynamics

Similar to the system configuration in Scanlan and Tomko (1971), we consider a 2-D airfoil with two degrees of

freedom: a vertical translation and a rotation around its center of mass. The deviations from the rest position will be

denoted respectively by h for the translation distance and a for the rotation angle. We also assume that the
configuration a ¼ 0 corresponds to a null angle of attack relative to the free stream, and that the airfoil is balanced so
that its center of mass coincides with its center of rotation. The motion of the airfoil is governed by the following

system:

m .h þ 2ohxh
’h þ o2hh

� �
¼

rV2
N

B

2
CLðtÞ; I .aþ 2oaxa ’aþ o2aa

� �
¼

rV2
N

B2

2
CT ðtÞ; ð23Þ

where m and I are the mass and mass moment of inertia per unit length of span, respectively; xh and xa are damping
ratios in bending and torsion, respectively; oh and oa are the natural mechanical frequencies; VN is the dimensional

velocity of the freestream; B is the chord length of the airfoil; r is the fluid density; and CL and CT are the instantaneous

aerodynamic lift and torque coefficients, respectively. The dots and double dots are used to denote first and second time

derivatives.

Based on the notation introduced in Section 3, we have the following relationships between a; ’a; .a and

Oa; dOa=dt; uN:

Oa ¼ ’a;

dOa

dt
¼ .a; ð24Þ

uN ¼
cos a

�sin a

 !
:
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Letting D denote the vector describing the state of the airfoil, i.e.,

D �
h

a

 !
; ð25Þ

we can rewrite Eqn. (23) in matrix form as

mo2h 0 2mxhoh 0 m 0

0 Io2a 0 2Ixaoa 0 I

2
64

3
75

D

’D

.D

0
B@

1
CA ¼

rV2
N

B

2

CLðtÞ

BCT ðtÞ

 !
: ð26Þ

In the computations, the evolution of D is numerically obtained using a Newmark scheme (Zienkiewicz, 1977); we

have

Dnþ1 ¼Dn þ Dts
’Dn þ ð0:5� yÞDt2s

.Dn þ yDt2s
.Dnþ1;

’Dnþ1 ¼ ’Dn þ ð1� mÞDts
.Dn þ mDts

.Dnþ1; ð27Þ

where superscripts are used to denote the time level, Dts is the time step, and m; y are numerical integration parameters.
For m ¼ y ¼ 0 we recover the classical Euler forward scheme, while for m ¼ 1 and y ¼ 0:5 we have the Euler backward
scheme. Combining the present discretization scheme with Eq. (26), we obtain

Dnþ1

’Dnþ1

.Dnþ1

0
B@

1
CA ¼ ½K��1

Dn þ Dts
’Dn þ ð0:5� yÞDt2s

.Dn

’Dn þ ð1� mÞDts
.Dn

F
n

0
BB@

1
CCA; ð28Þ

where

F
n
�

rV2
N

B

2

Cn
L

BCn
T

 !
ð29Þ

is the fluid load vector and

½K � ¼

1 0 0 0 �yDt2s 0

0 1 0 0 0 �yDt2s

0 0 1 0 �mDts 0

0 0 0 1 0 �mDts

mo2h 0 2mxhoh 0 m 0

0 Io2a 0 2Ixaoa 0 I

2
6666666666666666666664

3
7777777777777777777775

: ð30Þ

The lift and torque coefficients are obtained by integrating the pressure and viscous stress distributions along the

body surface. Let F and T denote the total fluid force and fluid torque relative to the center of rotation XR; respectively.
In the relative reference frame and with respect to the basis ðn; sÞ; we have

F ¼
Z
@Oo

or

Re
s � pðtÞn

h i
dt ð31Þ

and

T ¼
Z
@Oo

or

Re
ðx � XRÞ4s � pðtÞðx � XRÞ4n

h i
dt: ð32Þ
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Consequently, the lift and torque coefficients are given by

CL ¼ F4*uNð Þ � k ð33Þ

and

CT ¼
Z
@Oo

or

Re
ðx � XRÞ4s � pðtÞðx � XRÞ4n

h i
dt ð34Þ

respectively. Meanwhile, the drag coefficient is defined by

CD � F � *uN: ð35Þ

4.4. Normalization and coupling

In order to couple the equations of motion of the airfoil and fluid a consistent normalization convention is required.

Normalization of the governing equations for the fluid is based on selecting the free-stream velocity VN as

characteristic velocity scale, and the half-cord B=2 as characteristic lengthscale. This results in characteristic time scale
tn � B=ð2VNÞ: Under this normalization convention, the equations of motion of the airfoil are expressed as

Dnþ1

’Dnþ1

.Dnþ1

0
B@

1
CA ¼ ½Kn��1

Dn þ Dt ’Dn þ ð0:5� yÞDt2 .Dn

’Dn þ ð1� mÞDt .Dn

F
n

0
BB@

1
CCA; ð36Þ

where the normalized stiffness matrix ½Kn� is given by

½Kn� ¼

1 0 0 0 �yDt2 0

0 1 0 0 0 �yDt2

0 0 1 0 �mDt 0

0 0 0 1 0 �mDt

mo2h 0 2
m

tn
xhoh 0

m

tn2
0

0 Io2a 0 2
I

tn
xaoa 0

I

tn2

2
6666666666666666666666664

3
7777777777777777777777775

: ð37Þ

In light of the structure of the stiffness matrix ½Kn�; it is clear that coupling between the displacement (h) and rotation
(a) can only occur through the fluid force term F: In addition, if one wishes to constrain one of these degrees of
freedom, it suffices to set to zero the corresponding fluid force term in F: Also note that for the parameter regime
considered in the present study, the simple staggered coupling scheme provides stable and accurate solutions, as shown

in the examples below.

5. Validation

Before applying the numerical codes to the study of flutter derivatives, tests are performed in this section in order to

verify the predictions. To this end, the codes are used to compute the unsteady flow field around a stationary cylinder, a

spinning cylinder, a stationary airfoil at large angle of attack, and an oscillating airfoil. Computed predictions are then

compared with published experimental or computational data.
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5.1. Flow around a fixed cylinder

The flow around a stationary cylinder has been extensively analyzed and many suitable references are available for

the purpose of comparison. In this section we consider two test cases, based on (a) the early stages of the flow around an

impulsively started cylinder and (b) the stationary unsteady field that is established at large times after the loss of

symmetry in the cylinder wake.

The impulsively started motion around a circular cylinder is computed for a Reynolds number Re ¼ 3000: Variables
are normalized with respect to the appropriate combination of the fluid density, the free-stream velocity, and the

cylinder radius. The simulation is performed by setting to zero the parameters B and C of the conformal

transformation. The computational domain has RG ¼ 50; and is discretized using a grid with NX ¼ 200 and NY ¼ 160:
The normalized integration time step Dt ¼ 0:005:
Fig. 4 shows instantaneous streamfunction and vorticity contours at dimensionless times t ¼ 1; 2, 4, and 6 after the

impulsive start. The plots clearly depict the growth of the boundary layer, as well as the formation of a symmetric pair

of vortices in the wake of the cylinder. In order to test the predictions, we compare in Fig. 5 the computed streamwise

velocity component along the axis of symmetry in the near wake with the experimental measurements of Loc and

Bouard (1985). The experimental and computed profiles exhibit a similar time evolution but a time shift is evident

between the two. Similar phase shifts have also been reported in other numerical studies (e.g., Chang and Chern, 1991).

The test may nonetheless be considered satisfactory.

Due to the essential instability of the cylinder wake, the flow loses its symmetry and a von Karman vortex street is

established behind the cylinder, as shown in Fig. 6. A stationary regime is eventually reached in which the flow is

dominated by the periodic shedding of opposite-sign vortices in the cylinder wake. Computations are performed in

order to examine the properties of the stationary flow. Results are obtained for two Reynolds numbers, Re ¼ 200 and
855. Fig. 7 shows the time evolution of the lift and drag coefficients, respectively,

CL �
FL

0:5rU2
N

D
ð38Þ

and

CD �
FD

0:5rU2
N

D
: ð39Þ

Here, FL denotes the lift force per unit depth, FD denotes the drag force per unit depth, and D is the diameter of the

cylinder. As expected, the instantaneous lift and drag coefficients exhibit an oscillatory behavior with well-defined

frequencies. The computed predictions are compared in Table 1 with experimentally determined and computed values

(Zang and Dalton, 1997; Lecointe and Picquet, 1989). The comparison shows that the computations are in good

agreement with the measurements and the other numerical results.

5.2. Rotating cylinder in uniform flow

In order to test the formulation and computations in a relative frame of motion (Section 3), we consider the problem

of a circular cylinder rotating around its center at a constant angular velocity Oa; while placed in a uniform and

constant free stream UN: Again, two studies are performed: the first focuses on the flow developing after the

impulsively started motion, while the second focuses on the characteristics of the periodic state at larger times. This

problem has two parameters which are the Reynolds number based on the free-stream velocity, and the dimensionless

velocity Vr defined as the ratio of the velocity on the cylinder boundary to the inflow velocity:

Vr �
OaR

UN

: ð40Þ

The early stages of the flow have been studied by Bard and Dennis (1985) and Bard et al. (1989). In our computations,

the cylinder cannot be set impulsively into rotation in order to control the vorticity released into the fluid. Thus, we

approximate the impulsive start using a short-duration transient phase during which the acceleration decreases linearly

with time to vanish for tXts: In the present computations, we use ts ¼ 0:1: As in the previous section, variables are
normalized with respect to the appropriate combination of the fluid density, the free-stream velocity, and the cylinder

radius.

Fig. 8 compares the unsteady evolution of the computed lift, drag, and torque coefficients, together with some data-

points extracted from Bard and Dennis (1985). In the two computations, the Reynolds number Re ¼ 200 and the
velocity ratio Vr ¼ 1: Our computations are performed using a time step Dt ¼ 0:01 and a domain with RG ¼ 30;
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Fig. 4. Instantaneous streamfunction and vorticity contours at different reduced times, for the impulsively started cylinder and

Re ¼ 3000: (a) tU=R ¼ 1; (b) tU=R ¼ 2; (c) tU=R ¼ 4; (d) tU=R ¼ 6: The computations are performed for a domain with RG ¼ 50;
NX ¼ 200; NY ¼ 160; and Dt ¼ 0:005:
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NX ¼ 160; NY ¼ 120: As shown in the figure, there is good agreement between the present predictions and the results
of Bard and Dennis (1985).

The initial stages of the motion are also examined for a cylinder with Re ¼ 1000 and three velocity ratios, Vr ¼ 0:5; 1,
and 3. We use the same numerical parameters as in the previous example, except for Vr ¼ 3 where the time step is
reduced to Dt ¼ 0:005: The unsteady evolution of the lift coefficient is shown in Fig. 9, which also reports some of the
results from Bard et al. (1989). Except for the initial starting phase, the behavior of the unsteady lift at Vr ¼ 0:5 and 1 is
consistent with the corresponding results in Bard et al. (1989). For Vr ¼ 3; differences with results in Bard et al. (1989)
are more pronounced; however, a comparison of the vortex development near the cylinder and its interaction with the

boundary layer in the results of Bard et al. (1989) shows that the computed flow fields exhibit the same features. Note

that the present experiments show that the relative frame computations can deal with large variation of the angle of

attack, since for Vr ¼ 1 at t ¼ 24 the cylinder has completed about six turns around its center.
Next, we verify the computed results for the stationary flow around the spinning cylinder in a uniform stream. To this

end, we compare the computed results with those of Kang and Choi (1999), based on a cylinder with Reynolds number

Re ¼ 100 and three velocity ratios, Vr ¼ 0:5; 1; and 1:5: The present computations are performed using a time step
Dt ¼ 0:01; and a domain with RG ¼ 50; NX ¼ 200; and NY ¼ 160: In Table 2 we compare our predictions of the
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Fig. 6. Instantaneous vorticity contours in the wake of a circular cylinder at Re ¼ 200: The computations are performed for a domain
with RG ¼ 50; NX ¼ 200; NY ¼ 160: The time step Dt ¼ 0:01:
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Fig. 5. Instantaneous profiles of the streamwise velocity along the axis in the near wake of an impulsively started cylinder at Re ¼
3000: Experimental results from Loc and Bouard (1985): (+) tU=R ¼ 2; (	) tU=R ¼ 3; (*) tU=R ¼ 4; (&) tU=R ¼ 6; and present
numerical results, using the lines, for tU=R ¼ 226 from top to bottom. The computations are performed for a domain with RG ¼ 50;
NX ¼ 200; NY ¼ 160; and Dt ¼ 0:005:
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Fig. 7. Time evolution of the lift and drag coefficients for a stationary cylinder at Re ¼ 200 (top) and Re ¼ 855 (bottom): (——–) CL;
(– – –) CD: The computations are performed for a domain with RG ¼ 50; NX ¼ 200; NY ¼ 160: The time step Dt ¼ 0:01:

Table 1

Fluid forces on a stationary cylinder at Re ¼ 200 and 855

Experimental

Re CD St

200 1.2 .19

855 1.1 .21

CD CL St

Zang and Dalton (1997)

Re=200 1.2570.03 70.54 0.196

Re=855 1.270.2 70.95 0.238

Lecointe and Picquet (1989)

Re=200 1.2970.04 70.6 0.195

Re=855 1.4470.23 71.3 0.236

Present

Re=200 1.3370.04 70.65 0.201

Re=855 1.4370.16 71.27 0.235
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Strouhal number (St), and the mean and fluctuation of the lift (CL) and drag (CD) coefficients with the results of Kang

and Choi. Generally, a very good agreement is observed, though small but noticeable differences can be seen at

Vr ¼ 1:5: This completes the analysis of the rotating cylinder flow.

5.3. Oscillating NACA0012 Airfoil

Finally, to complete this section, the airfoil is now forced to rotate around a point located at the first third of the

chord length. The angle of attack is given as a function of the normalized time t; according to

aðtÞ ¼ a0 � *a cosð2ptÞ; ð41Þ
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Fig. 9. Variation with reduced time (tU=R) of the lift coefficient for a rotating cylinder with Re ¼ 1000 and different Vr: Present
computations: (——) Vr ¼ 0:5; (– – –) Vr ¼ 1; (- - -) Vr ¼ 3; and symbols for the numerical results of Bard et al. (1989): (+) Vr ¼ 0:5;
(	) Vr ¼ 1; (*) Vr ¼ 3:
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Fig. 8. Variation with reduced time (tU=RÞ of the lift (– – –), drag (- - - -), and torque (...) coefficients for the rotating cylinder with
Vr ¼ 1 and Re ¼ 200: Symbols (+) are used to denote the numerical results of Bard and Dennis (1985).
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where the time is normalized with the chord length, a0 ¼ 301 is the mean angle of attack and *a ¼ 71 the amplitude of the
motion. The Reynolds number based on inflow velocity, viscosity, and chord length is 3000: The numerical parameters
are NX ¼ NY ¼ 128; RG ¼ 35; Dt ¼ 0:001 and eight grid levels are used. Since both the motion amplitude and mean
value of the angle of attack are large, once again the flow does not remain attached, and large recirculation zones on the

upper surface are reported. In Fig. 10 we have depicted the evolution of the lift and drag coefficients with time.

Compared to the fixed airfoil case, the fact of driving the rotation causes the flow to respond mainly at the forced

frequency (with a characteristic period of 1). The curves of Fig. 10 can be compared with the results of Ohmi et al.

(1991) to show that the estimated fluid force characteristics are correctly computed. Note that our results contain less

high-frequency fluctuations (i.e., are smoother) as compared to Ohmi et al. (1991).

6. Estimation of flutter derivatives

In this section, we recall some results of the flutter theory of a thin airfoil for a more extensive discussion of the

theory, see Scanlan, 2000; Scanlan and Jones 1999. Next, we describe various experimental methodologies (e.g., Scanlan

Table 2

Fluid forces on a rotating cylinder at Re ¼ 100 and Vr ¼ 0:5; 1 and 1.5

Vr ¼ 0:5 Vr ¼ 1 Vr ¼ 1:5

St

Kang and Choi (1999) 0.187 0.186 0.183

Present 0.188 0.188 0.182

CL

Kang and Choi (1999) 1:270:52 2:1570:6 3:270:58
Present 1:1570:57 2:2870:55 3:570:52

CD

Kang and Choi (1999) 1:370:09 1:1570:16 0:8570:2
Present 1:370:07 1:1570:14 0:9770:18

-3

-2

-1

0

1

2

3

4

0 1 2 3 4

A
ng

le
/1

0 
an

d 
fo

rc
e 

co
ef

fic
ie

nt
s

Reduced time

Fig. 10. Evolution with the reduced time (tU=L) of the lift (– – –), drag (- - - -) coefficients and angle of attack (——), for the oscillating

airfoil. Amplitude of the oscillation is 71: with a normalized period of 1: The mean angle of attack is 301: and Re ¼ 3000: Rotation
center is located at the first third of the chord length. Numerical parameters are NX ¼ NY ¼ 128; RG ¼ 35; Dt ¼ 0:001; seven grid
levels.
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and Tomko, 1971; Beith, 1998; Iwamoto and Fujino, 1995) that are presently used to estimate the flutter derivatives of a

given (airfoil or bridge deck) section. The numerical experiments presented in the next sections closely follow these

methodologies, and the basic ideas of the procedures are briefly outlined below.

6.1. Theory of flutter derivatives

The basic idea of the flutter derivatives lies in the identification of the motion-related fluid forces exerted on an airfoil,

or, more particularly on a 2-D section of it. This process assumes a linear relation between force functions and the laws

of motion of the airfoil so that superposition, or conversely decomposition, in both frequency and freedom spaces is

allowed. Such a linear decomposition limits the validity of the approach to small-amplitude motions. For a streamlined

airfoil undergoing smooth oscillations with a circular frequency o in a uniform free stream of velocity VN; Scanlan and
Tomko (1971) provide the following expansion:

L ¼
rV2

N

2
ð2bÞ kHn

1

’*h

VN

þ kHn

2

b’a
VN

þ k2Hn

3 a

" #
; ð42Þ

M ¼
rV2

N

2
ð2b2Þ hAn

1

’*h

VN

þ kAn

2

b’a
VN

þ k2An

3a

" #
; ð43Þ

where L and M are the aerodynamic lift and torque; r is the air density; b ¼ B=2 is the airfoil half chord-length;
kHn

1 ; kHn
2 ; k2Hn

3 ; kAn
1 ; kAn

2 and k2An
3 are the flutter derivatives of the studied airfoil; and k ¼ bo=VN is the reduced

frequency of the motion. The flutter derivatives are functions of the reduced frequency k; and in practice we seek the
aerodynamic coefficients Hn

1 ; Hn
2 ; Hn

3 ; An
1 ; An

2 ; and An
3 appearing in Eqs. (42) and (43). These expressions clearly show

the linear dependence of the fluid forces acting on the airfoil in relation to the accelerations and velocities of the two

displacement variables h and a: ’*h corresponds to the transverse velocity (relative to the free-stream velocity), measured
at the airfoil mid-chord. The tilde is added in order to distinguish the velocity at mid-chord, which combines with ’a
whenever the rotation center is not located at the mid-chord point, from the solid-body ‘‘vertical’’ velocity of the airfoil:
’h: In the following we restrict our attention to airfoils that are permitted to rotate around their mid-chord point. Hence
’*h � ’h; and we drop the tilde in the remaining part of the paper. The determination of the flutter derivatives is now
discussed in the following subsections.

6.2. Extraction from forced-motion

By virtue of the linear expansion of the related-motion force functions equations (42) and (43), the flutter derivatives

Hn
1 and An

1 associated to h-motion (resp. Hn
2 ; Hn

3 ; An
2 ; and An

3 for a-motion) can be measured from forced-motion

experiments at a fixed reduced frequency k: The experiment consists in measuring the lift and torque of an airfoil subject
to pure vertical (or torsional) oscillations, and then to extract the in-phase and out-of-phase components corresponding

to the reduced frequency k: For instance, let us consider the following time variation of the angle of attack:

aðtÞ ¼ a0 sinot; ð44Þ

then, according to Eqs. (42) and (43) we obtain

LðtÞ
a0k2rV2b

¼ Hn

2 cosot þ Hn

3 sinot
� �

; ð45Þ

MðtÞ
a0k2rV2b2

¼ An

2 cosot þ An

3 sinot
� �

: ð46Þ

Thus, Hn
3 (A

n
3) can be computed from the component of the lift (torque) signal in phase with the oscillation, while Hn

2

(An
2) can be obtained from the out-of-phase component of the lift (torque) signal. Applying the same analysis to

pure vertical oscillations, we find that Hn
1 and An

1 can be deduced from the out-of-phase components of the

corresponding lift and torque signals. The experiments must be repeated for each reduced frequency k of interest. The

main difficulty of this approach is the extraction of the fluid loads from measurements which usually combine the fluid

loads and the inertia forces due to the body motion. However, from the computational point of view, this does not

pose a significant challenge since the fluid loads are computed independently from the flow solution. Moreover,

since the motion of the airfoil is prescribed, the coupling between the flow and the airfoil dynamics is not considered

in this kind of experiments. Numerical extraction of the flutter derivatives using the forced-motion approach is

considered in Section 7.
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6.3. Extraction using spring-mounted airfoil

Determination of the flutter derivatives can also be based on the analysis of the variations of the apparent damping

ratios and natural mechanical frequencies of the airfoil when placed in the free stream. To describe the methodology, we

consider a spring-mounted airfoil which is allowed to rotate around its mid-chord point. Accordingly, the dynamics of

the airfoil are governed by the linear oscillator equation:

I .aþ 2oaza ’aþ o2aa
� �

¼ MðtÞ: ð47Þ

Introducing the expansion of Eq. (43) we can rewrite Eq. (47) as

.aþ 2zawoaw ’aþ o2awa ¼ 0; ð48Þ

where

2zawoaw ¼ 2zaoa �
rVN

I
b3ðkAn

2Þ; ð49Þ

o2aw ¼ o2a �
rV2

N

I
b2ðk2An

3Þ: ð50Þ

Thus, zaw is the apparent damping ratio in torsion and oaw is the apparent mechanical frequency for the system

surrounded by the flow (the subscript w stands for ‘‘wetted’’). It is clear that one may expect the experimental device to

preserve the positiveness of the square of the apparent mechanical frequency (so its stiffness), namely o2aw > 0; to ensure
that the system exhibits finite amplitude oscillations. This constraint is expressed using the following inequality:

o2aw > 0 ) Io2a > rV2
N

b2ðk2An

3Þ: ð51Þ

Assuming that the airfoil is well balanced, that is the latter criterion is satisfied, then the asymptotic motion has the

following form:

aNðtÞ ¼ a0 explawt; ð52Þ

where law ¼ �daw þ i %oaw is related to the apparent damping ratio and natural frequency through

daw ¼ zawoaw; ð53Þ

%o2aw ¼ o2aw 1� z2aw

� �
Eo2aw: ð54Þ

Therefore, the experiment consists in measuring the characteristics of the damped oscillation of the airfoil. Once zaw and

oaw are estimated, Eqs. (49)–(50) can be used to determine An
2 and An

3 : za and oa are measured from an experiment

without inflow (VN ¼ 0). Similarly, when the characteristics of the asymptotic motion equation (52) are known from
measurement, Hn

2 and Hn
3 are determined from the component of the lift in phase with ’aN and with aN: The same

analysis applies for an airfoil undergoing vertical motion only, with the remaining coefficients Hn
1 and An

1 as results.

7. Forced motions

The numerical experiments below follow the same approach described in Section 6.2. Starting from the steady flow,

the airfoil is subjected to prescribed oscillations and the computations are carried for four periods in order to go beyond

the initial transient. Then the resulting fluid forces recorded on the last period are projected in Fourier space to extract

the corresponding flutter derivatives. The experiment is repeated for the two motions (pure translation and rotation)

and each frequency. Flutter derivatives are given as functions of the reduced velocity VN=Nb (Scanlan and Tomko,

1971), where k=2p:

7.1. NACA0012 Airfoil

We start by computing the flutter derivatives for an NACA0012 airfoil. To this end, forced-motion simulations are

conducted using the following driving signals:

hðtÞ ¼ 0:05b sinot; aðtÞ ¼ 2sinot ðdegÞ:

The computed values of the flutter derivatives are plotted in Fig. 11, which also reports theoretical results for a zero-

thickness airfoil (flat plate) in an inviscid flow. These theoretical values are commonly used in preliminary aircraft

design, but are the solution of a problem that is not fully equivalent to the one solved in the present work. Thus, full
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agreement between the theoretical and computational results is not expected, but the comparison still provides us with

valuable insight.

It can be observed that the computed values of Hn
1 and An

1 are close to the theoretical results, but that the

computations lead to slightly lower predictions. Lower computed values are also reported for An
2 (effect of ’a on the
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Fig. 11. Computed flutter derivatives (*) of an NACA0012 airfoil as a function of the reduced velocity V=Nb: Theoretical values (solid
lines) are also shown for comparison. The results are obtained using forced-motion simulations. The computations are performed on a

domain with RG ¼ 25; using a grid with 128	 128 grid points. The Reynolds number based on chord length Re ¼ 800; and the time
step Dt ¼ 0:01:
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torque), but with larger and increasing differences when the reduced velocity is increased. Large differences have also

been reported in the physical experiments of Scanlan and Tomko (1971), who proposed to correct the theoretical values

by a factor of 4:54=2p in order to account for the geometrical differences between the NACA0012 airfoil and the flat
plate. The corrected theoretical results for An

2 are also reported in Fig. 11. With this correction we get a much better

agreement between the present computations and the theory.

For Hn
2 (effect of angular velocity on the lift), the agreement between theoretical and computed values is poor and

trends are also different. In particular, the theory predicts that Hn
2 has a minimum at V=NbE14: This trend is not

observed in the computations. A similar disagreement was also reported in physical measurements given by Scanlan and

Tomko (1971).

Finally, Fig. 11 shows that the computed values of An
3 and Hn

3 are in good agreement with the theoretical results, and

that both the computed and theoretical predictions reveal the same trends. One can still note small differences in the

magnitude of the coefficients that increase with increasing reduced velocity. Again the computations provide lower

values for Hn
3 and An

3 than the theory predicts. Thus, except for Hn
2 ; the computed predictions are consistent with the

corresponding theoretical results.

As noted earlier, close complete agreement between theory and computations is not to be expected, in particular due

to finite thickness and Reynolds number effects. Additional computations are performed below in order to examine

these effects.

7.2. Ellipses

In this section the effect of the section thickness is investigated based on forced-motion experiments for different

ellipses. The thickness ratio, denoted Tr; is defined as the ratio of the ellipse thickness to the chord length. We consider
four thickness ratios, Tr ¼ 0:21; 0.142, 0.08, and 0.026, and perform simulations using the same Reynolds number and
numerical parameters as in the previous set of computations. Results are reported in Fig. 12 which depicts the

dependence of the computed flutter derivatives on the reduced velocity VN=Nb:
The results show that the relative thickness of the ellipse has a noticeable influence on the lift-related coefficients, Hn

1 ;
Hn
2 ; and Hn

3 : Specifically, the magnitude of these coefficients increases with a decreasing thickness ratio. This trend
could explain why the computed values of Hn

1 and Hn
3 for the airfoil are smaller than the theoretical values of the flat

plate. In addition, the results suggest that the finite thickness of the sections considered in this work does not seem to be

responsible of the large deviation of Hn
2 from the inviscid theory, since this deviation increases as the thickness ratio

decreases.

Further examination of the curves given in Fig. 12 shows that the torque-related coefficients are much less affected by

the relative thickness. In fact, except for the highest value of Tr considered in the study, the torque coefficients An
1 and

An
3 are nearly unaffected by Tr; especially at the lower values of the reduced velocity. For An

2 ; at the lowest values of Tr;
we observe an attenuation of the computed magnitude as the reduced velocity is increased. Here, an under-resolution of

the computational grid could be responsible for this trend.

Based on the results of the present experiments, one may conclude that: (i) the section thickness mainly affects the

coefficients related to transverse motion, (ii) the magnitudes of the Hn
1 ; Hn

2 ; and Hn
3 increase as the thickness ratio

decreases, (iii) the discrepancy between the computed values of Hn
2 and the theoretical flat-plate prediction does not

appear to be due to a finite-thickness effect; and (iv) torsion-related coefficients are not very sensitive to the section

thickness, as long as the thickness ratio is small.

7.3. Reynolds effects

As discussed earlier, the present approach is based on selecting moderate values of the Reynolds number, which

enables us to perform well-resolved direct simulations of the flow. The choice of Re is somewhat arbitrary but is

generally orders of magnitude smaller below values characteristic of real applications. Consequently, for the approach

to be useful, the predictions should exhibit weak dependence on the Reynolds number. We briefly address this issue by

performing additional simulations with different values of Re: We focus once again on the NACA0012 airfoil
considered in Section 7.1, and obtain flutter derivative predictions for Re ¼ 600 and 1200: The same domain size is used
but the spatial discretization and time step are varied in order to ensure adequate resolution of viscous boundary layer

as well as stability of the computations.

Computed values of the flutter derivatives are plotted in Fig. 13. It can be seen in this figure that Hn
1 and Hn

3

coefficients are not strongly affected by the value of the Reynolds number, in contrast to Hn
2 which exhibits significant

dependence on Re; especially for reduced velocities VN=Nb > 8: The same trend is observed for the torque-related
coefficients. Specifically, An

1 and An
3 are practically unaffected by the value of Re: Meanwhile, the estimates for An

2 are

O.P. Le Ma#ıtre et al. / Journal of Fluids and Structures 17 (2003) 1–28 19



essentially independent of Re in the range VN=Nbo8; but exhibit a noticeable variation with Re at higher values of the
reduced velocity. Thus, one can conclude that the computed coefficients related to the rotational velocity ’a are affected
by the choice of the Reynolds number when large reduced velocities are considered. Using the present computational

approach, it appears difficult to obtain sharp, Re-independent estimates of Hn
2 and An

2 from the forced-motion

simulations.

7.4. Influence of amplitude of motion

We conclude our discussion of forced-motion approach by analyzing the effect of the amplitude of the imposed

forcing signals. To this end, we focus on the NACA0012 airfoil and systematically vary the amplitudes of the transverse

and torsional motions. The Reynolds number, grid resolution, and time step are the numerical parameters which are the
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Tr ¼ 0:026; (*) Tr ¼ 0:080; (	) Tr ¼ 0:142; (þ) Tr ¼ 0:210: Numerical parameters as in Fig. 11.
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same as in Section 7.1, but the domain size is extended to RG ¼ 30: The reduced velocity is fixed at VN=Nb ¼ 8 and the
flutter derivatives are computed for different forcing amplitudes.

Recalling that Hn
1 and An

1 are related to cross-stream motion, we compute them using reduced displacements (relative

to that of b) equal to 0.02, 0.05, 0.10, 0.15, and 0.20. The results are given in Figure 14. The curves show that in the
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range considered An
1 is practically unaffected by the amplitude of the transverse motion. In contrast, the computed

values of Hn
1 exhibit an appreciable dependence on the transverse displacement amplitude. In particular, Hn

1 tends to

decrease as the amplitude of the oscillations increases. In addition, Hn
1 does not appear to exhibit a simple dependence

on the motion amplitude, and so that extrapolation to infinitesimal amplitude is not straightforward. This behavior

may also contribute to the aforementioned disagreement between computed and theoretical estimates of Hn
1 :

The effect of the amplitude of the torsional motion is analyzed in a similar fashion. Specifically, simulations are

performed at fixed reduced velocity, VN=Nb ¼ 8; using the following forcing amplitudes: 11; 21; 41; and 61: (Note that
even for the largest amplitude tested (61), for VN=Nb ¼ 8 the flow remains attached on the airfoil surface so that the
linear expansion given in Eqs. (42) and (43) remains valid.) Computed flutter derivatives are plotted in Fig. 15. The

results show that, except for the lowest amplitude tested (11), the computed coefficients are not significantly affected

when the angular motion amplitude of the motion is increased. In fact, it appears that as the amplitude is reduced, the
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relative error on the computed fluid loads increases so that the extraction of the coefficients becomes inaccurate.

Further tests (not shown) indicate that for angular motion amplitudes smaller than 11; it is difficult to obtain consistent
estimates of the motion coefficients.

8. Spring-mounted airfoil

In this section we apply the methodology described in Section 6.3 for the numerical prediction of the flutter

derivatives of an NACA0012 airfoil. This methodology requires simulation of the spring-mounted airfoil problem and

use of the numerical solution to determine the effect on the free stream on the airfoil oscillations.

8.1. Parameters and normalization

Instead of using dimensional quantities in Eqn (23) it has been found more convenient to treat the problem in its

dimensionless form. We select b as characteristic length scale, VN as characteristic velocity and rV2
N
=2 as the

characteristic pressure. The characteristic time is then b=VN and the normalization of the equations yields the

dimensionless mass and mass moment of inertia ( %M and %I), reduced mechanical damping ratios for the transverse and

torsional motions (%zh and %za) and reduced natural mechanical frequencies ( %fh and %fa), and the aspect ratio H ¼ h=b:
In the computations below, the reduced mechanical damping ratios of the airfoil are fixed; we use %zh ¼ %za ¼ 1=100:

Meanwhile, the values of %M; %I; %fh; and %fa are selected to obtain the desired response of the system. In practice, %fh and %fh

are chosen so that the airfoil undergoes oscillations at the reduced velocity of interest, and %M and %I are tuned so that the

fluid loads are more (when they are decreased) or less (when they are increased) felt by the airfoil. Note that in the limits
%zh; %za-0 and %M; %I-N one would recover the forced-motion case. Also, using the present conventions the simulation

conditions are described by %M; %zh; %fh; and Re for transverse motion analysis, and by %I; %za; %fa; and Re for torsional
motion.

8.2. Example of numerical results

Fig. 16 depicts typical results of a simulation of an airfoil undergoing free-oscillations around its half-chord point. In

this example, Re ¼ 800; %za ¼ 1=100; %I ¼ 30; and %fa ¼ 0:07: The numerical experiment starts from a flow at rest. Then
the Navier–Stokes equations are integrated over a period of five dimensionless time units. During this first stage, the
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Fig. 16. Typical response for spring-mounted airfoil undergoing oscillations around its half-chord point. Plotted on the left is the

rotation velocity against the angle of attack. The Reynolds number is 800, %I ¼ 100; %fa ¼ 0:1; and %za ¼ 1=100: Other numerical
parameters are the same as for Fig. 11. The effect of the free stream—which increases the damping rate—is illustrated by contrast with
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airfoil remains fixed at its initial angle of attack. Following this initial stage, the airfoil is released, and damped-

oscillation regime is consequently triggered. For analysis of torsional oscillations, an initial angle of attack of 2:51 is
used.

The effect of the free stream on the airfoil dynamics is illustrated in Fig. 16 by contrasting the numerical solution

(left) to a prediction that ignores the aerodynamics loads (right). Clearly, the presence of aerodynamic loads leads to a

more rapid contraction of the system trajectory. Note that using a lighter airfoil (i.e., decreasing %I), and keeping %fa
constant, would lead to an even faster contraction of the system trajectory. This trend persists until %I becomes too small

to ensure the stability of the system.

Results for the transverse motion are shown in Fig. 17, which depicts the evolution of the displacement signals for

different reduced frequencies. The results are obtained using %M ¼ 100; %zh ¼ 2p=100; and Re ¼ 800: In these

simulations, the angle of attack a is set to zero and the initial transverse displacement H ¼ 0:05: As in the analysis of
torsional motion, the simulations start from rest and the flow first develops during five dimensionless time units of time

before the airfoil is allowed to move in the cross-stream direction. Following its release, the airfoil starts to oscillate and

the amplitude of the oscillations decays exponentially, as shown in Fig. 17. It can be seen that the overall exponential

decay is nearly the same for all the frequencies considered. This similarity is due to the nearly linear dependence of Hn
1

on the reduced velocity, and the use of a constant mass %M:

8.3. Flutter derivatives

As was discussed earlier, the extraction of flutter derivatives is based on analyzing the differences between the

exponential decay of the motions with and without free stream. The methodology is valid during the asymptotic stages

of the decay, where the motion can be expressed in the form given in equation (52). Note, however, that the flow, and

consequently the aerodynamic loads as well as the motion of the airfoil, exhibit a transient behavior after release of the

airfoil. Therefore, the analysis is not necessarily valid during this transient. In the computations, the decaying

oscillations and fluid load signals were recorded during the entire period following release, and the entire data set is

processed. Not surprisingly, the computed damping rates and frequencies exhibit a scatter during the initial transient.

We eliminate this scatter by dropping estimates obtained during the initial transient, and only report values obtained at

larger times.

Fig. 18 shows the computed flutter derivatives for the NACA0012 airfoil. The theoretical values based on the

inviscid, flat-plate analysis are also provided for comparison. As in the forced-motion experiments, there is good

agreement between theory and computed values as for the coefficients related to ’h and a (i.e., Hn
1 ; An

3 ; Hn
3 ; and An

3). In

addition, consistent with earlier observations, a noticeable discrepancy can be observed between the computed values of

Hn
2 and An

2 and the corresponding theoretical predictions.

One can also note that the analysis yields sharp estimates of Hn
1 and An

1 and that in contrast the computed values of

Hn
3 and An

3 exhibit an increasing scatter as the reduced velocity increases. Following the remarks in Section 7.4, this

phenomenon may be due to the dependence of these coefficients on the amplitude of the motion, which in the present

simulations is evolving with time. The results also reveal a large scatter in the computed values of Hn
2 and An

2 and,

similar to experiences with the forced-motion approach, significant differences exist between the computed predictions

and the theoretical results.
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Fig. 17. Normalized displacement, H; versus reduced time, T ; for three different natural frequencies of the mechanical system. The
reduced damping %zh ¼ 1=100; mass %M ¼ 100: Numerical parameters as in Fig. 11.
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For VN=Nb > 10; the results of the spring-mounted simulations are in good agreement with those of the forced-
motion computations (11). For higher values, differences between the predictions of the two approaches can be

observed. These differences are not surprising since, as shown by Scanlan and Tomko (1971), the computed flutter

derivatives are not independent of the rate of the exponential decay. Thus it appears that there exists a compromise in
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the numerical extraction of flutter derivatives. On the one hand, it is convenient to set the parameters of the

experiment so that the deviation between the motion decay characteristics with and without free stream is large, i.e., the

flow has a large impact on the airfoil response, which ensures accurate computation of the coefficients. On the other

hand, a large influence of the flow on the motion decay means a large damping of the oscillations, so that the spectrum

of the motion becomes broader, and identification of the fluid loads with a reduced velocity becomes less certain. This

has significant implication for computational investigation of flutter coefficients at large reduced velocities. In

these situations, only a few periods can be simulated within a moderate CPU time and, in order to obtain accurate

estimates, it is essential that one observes significant variation of the amplitude of motion during ‘‘relatively short’’

simulation times.

9. Conclusion

The numerical estimation of the flutter derivatives of an NACA0012 airfoil requires the use of a computer code that

solves the unsteady incompressible Navier–Stokes equations. In this work, we have derived a formulation based on the

streamfunction/vorticity representation of the governing equations written in a relative frame attached to the airfoil.

This approach allows us to consider arbitrary unsteady motions of the airfoil. The computer code has been successfully

tested on various cases from the literature. Comparison has been made with both experimental and numerical earlier

works. In most of the cases a good agreement has been obtained, providing confidence in the reliability of the method.

These tests have covered problems involving impulsive and steady state responses, with fixed and moving boundary

situations.

The simulation scheme is then applied to compute the flutter derivatives of an NACA0012 airfoil. Two

approaches for the determination of motion coefficients are tested; these are based on: (a) analysis of the

unsteady pressure loads on the airfoil undergoing forced oscillations and (b) an analysis of decaying oscillations

of a spring-mounted airfoil. There is very good agreement between the computed predictions for reduced velocities

smaller than 10, but differences are observed at higher values. A dependence of the computed coefficients on the

imposed motion amplitude or the decay rate appears to be at the origin of the differences observed at high reduced

velocities.

The computed predictions are compared with theoretical results for a flat plate in the inviscid limit. Very good

agreement is observed for the coefficients related to the transverse motion (Hn
1 and An

1) and to the angle of attack (H
n
3

and An
3). On the other hand, significant differences are noted for coefficients related to the rotational velocity, Hn

2 and

An
2 : For these coefficients, disagreement between measured and theoretical values has also been noted by Scanlan and
Tomko (1971).

The simulations have also been applied to examine the effects of Reynolds number and profile thickness on the

predicted flutter derivatives. Computed results indicate that torsion-related coefficients are not very sensitive to the

section thickness, as long as the thickness ratio is small. However, the magnitudes of the coefficients related to

transverse motion increase as the thickness ratio increases. The analysis also indicates that the computed values of An
1 ;

An
3 ; Hn

1 ; and Hn
3 are not strongly affected by Re: In contrast, the coefficients related to the rotational velocity ’a; An

2 and

Hn
2 ; are significantly affected by the value of the Reynolds number, especially when large reduced velocities are

considered.

The present experiences indicate that, while the forced-motion and spring-mounted approaches yield consistent

estimates, the former approach appears to be computationally more convenient for several reasons. These

include the following. (i) The spring-mounted experiment requires a solution of a coupled fluid–structure interaction

problem and thus involves a secondary solver for the airfoil dynamics. This introduces an additional error source

and increases code complexity. (ii) Using the spring-mounted experiment, one is not able to determine, a priori,

the frequency of the oscillation that the airfoil will exhibit. Consequently, successive approximations are necessary

if the flutter derivatives are to be computed for a specific reduced velocity. In contrast, for the forced-motion

approach, the frequency of the oscillations is prescribed. (iii) The forced-motion analysis seems to be more suited

for the numerical investigation of flutter derivatives at large reduced velocities. This is due to the fact that the

forced-motion approach requires only the simulation of a few periods of the motion. For short-duration

simulations, the spring-mounted method requires a large decay rate, which may reduce the accuracy of the

corresponding estimates; alternatively, the simulations can be extended over a large number of periods, which

necessitates a higher CPU cost.

In addition, by exploiting linearity and superposition principles, it appears possible that flutter derivatives in a wide

reduced-velocity range can be determined within a single forced-motion simulation. For instance, the full frequency

range can be treated in the same experiment using a step (or Heaviside) law for the motion. The corresponding
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approach, known as the indicial approach, has already been exploited by Brar et al. (1996). Their experiences suggest

performing indicial calculations for step changes in ’h and ’a; by simulating linear ramps in the h and a displacements.
The numerical method presented here naturally accommodates such computations, which will be addressed in future

work.

Acknowledgements

O.L.M. wishes to acknowledge O. Daube for his useful comments and advice on the influence matrix technique,

and the Johns Hopkins University for its financial support during visits of summer 2000. Acknowledgement is also

made of the support of the U.S. National Science Foundation under Grant CMS 9705648 to the Johns Hopkins

University.

References

Bard, H.M., Dennis, S.C.R., 1985. Time-dependent viscous flow past an impulsively started rotating and translating circular cylinder.

Journal of Fluid Mechanics 158, 447–488.

Bard, H.M., Dennis, S.C.R., Young, P.J.S., 1989. Steady and unsteady flow past a rotating circular cylinder at low Reynolds numbers.

Computers and Fluids 17, 579–609.

Bisplighoff, R.L., Ashley, H., 1962. Principles of Aeroelasticity. Dover, New York.

Beith, J.G., 1998. A practical engineering method for the flutter analysis of long span bridges. Journal of Wind Engineering and

Industrial Aerodynamics 77–78, 357–366.

Brar, P.S., Raul, R., Scanlan, R.H., 1996. Numerical calculation of flutter derivatives via indicial functions. Journal of Fluids and

Structures 10, 337–351.

Buzbee, B., Golub, G., Nilson, C., 1970. On direct method for solving poisson’s equation. SIAM Journal of Numerical Analysis 7,

627–656.

Chang, C.-C., Chern, R.-L., 1991. A numerical study of the flow around an impulsively started circular cylinder by a deterministic

vortex method. Journal of Fluid Mechanics 233, 243–263.

Daube, O., 1992. Resolution of the 2D Navier–Stokes equations in velocity–vorticity form by means of an influence matrix technique.

Journal of Computational Physics 103, 402–414.

Deniz, S., Staubli, T., 1998. Oscillating rectangular and octagonal profiles : modeling of fluid forces. Journal of Fluids and Structures

12, 859–882.

Fletcher, C.A.J., 1988. . Computational Techniques for Fuid Dynamics, Vol. I. Springer, New-York.

Iwamoto, M., Fujino, Y., 1995. Identification of flutter derivatives of bridge deck from free vibration data. Journal of Wind

Engineering and Industrial Aerodynamics 54–55, 55–63.

Kang, S., Choi, H., 1999. Laminar flow past a rotating circular cylinder. Physics of Fluids 11, 3312–3321.

Larsen, A., Walther, J.H., 1998. Discrete vortex simulation of flow around five generic bridge deck sections. Journal of Wind

Engineering and Industrial Aerodynamics 67–68, 239–252.

Lecointe, Y., Picquet, J., 1989. Flow structure in the wake of an oscillating cylinder. ASME Journal of Fluids Engineering 111,

139–148.

Loc, T.P., Bouard, R., 1985. Numerical solution of the early stage of the unsteady viscous flow around a circular cylinder: a

comparison with experimental visualization and measurements. Journal of Fluid Mechanics 160, 93–117.

Mc Cormick, S.F., 1987. Multigrids Methods, Vol. 3. SIAM Books, Philadelphia.

Milne-Thomson, L.M., 1968. Theoretical Hydrodynamics, 5th Edition. Dover, New York.

Ohmi, K., Coutanceau, M., Daube, O., Loc, T.P., 1991. Further experiments on vortex formation around an oscillating and translating

airfoil at large incidences. Journal of Fluid Mechanics 225, 607–630.

Scanlan, R.H., 2000. Motion-related body-force function in two-dimensional low speed flow. Journal of Fluids and Structures 14,

49–63.

Scanlan, R.H., Jones, N.P., 1999. A form of aerodynamics admittance for use in bridge aeroelastic analysis. Journal of Fluids and

Structures 13, 1017–1027.

Scanlan, R.H., Tomko, J.J., 1971. Airfoil and bridge deck flutter derivatives. ASCE Journal of the Engineering Mechanics Division 97,

1717–1737.

Shen, W.Z., Ta Phuoc, L., 1995. Simulation of 2D external flows by means of decomposition method using an influence matrix

technique. International Journal for Numerical Methods in Fluid 20, 111–1135.

Tamura, T., Ohta, I., Kuwahara, K., 1990. On the reliability of the two-dimensional simulation for unsteady flows around cylinder-

type structure. Journal of Wind Engineering and Industrial Aerodynamics 35, 275–298.

Theodorsen, T., 1931. Theory of wing sections of arbitrary shape. NACA Technical Report 411.

O.P. Le Ma#ıtre et al. / Journal of Fluids and Structures 17 (2003) 1–28 27



Vanel, J.M., Peyret, R., Bontoux, P., 1986. A pseudospectral solution of vorticity-streamfunction equations using the influence

matrix technique. In: Morton, K.W., Baines, M.J. (Eds.), Numerical Methods for Fluid Dynamics. Clarendon Press, Oxford,

pp. 463–475.

Worlibar, A.S., Knio, O.M., Klein, R., 1998. Numerical simulation of the thermoaccoustic refrigerator: II Stratified Flow around the

Stack. Journal of Computational Physics 144, 299–324.

Zang, J., Dalton, C., 1997. Interaction of a steady approach flow and a circular cylinder undergoing forced oscillations. ASME Journal

of Fluids Engineering 119 (4), 808–813.

Zienkiewicz, O.C., 1977. The Finite Element Method in Engineering Science, 3rd Edition. Mc Graw-Hill, New York.

O.P. Le Ma#ıtre et al. / Journal of Fluids and Structures 17 (2003) 1–2828


	Estimation of the flutter derivatives of an NACA airfoil by means of Navier-Stokes simulation
	Introduction
	Vorticity-Streamfunction Formulation
	Conformal mapping
	External boundary conditions
	Wall boundary conditions
	Discretization and solvers

	Moving airfoil
	Fluid forces and airfoil dynamics
	Pressure distribution
	Distribution of Viscous Stresses
	Airfoil dynamics
	Normalization and coupling

	Validation
	Flow around a fixed cylinder
	Rotating cylinder in uniform flow
	Oscillating NACA0012 Airfoil

	Estimation of flutter derivatives
	Theory of flutter derivatives
	Extraction from forced-motion
	Extraction using spring-mounted airfoil

	Forced motions
	NACA0012 Airfoil
	Ellipses
	Reynolds effects
	Influence of amplitude of motion

	Spring-mounted airfoil
	Parameters and normalization
	Example of numerical results
	Flutter derivatives

	Conclusion
	Acknowledgements
	References


